Ngày 29: Quantum Credit Explainability
Ngày 29: Quantum Credit Explainability
🎯 Mục tiêu học tập
- Hiểu sâu về quantum explainability và classical explainability
- Nắm vững cách quantum computing cải thiện giải thích mô hình tín dụng
- Implement quantum explainability algorithms
- So sánh performance giữa quantum và classical explainability
📚 Lý thuyết
Credit Explainability Fundamentals
1. Classical Explainability
Explainability Methods:
- Feature Importance: Đánh giá tầm quan trọng của biến
- SHAP/LIME: Phân tích đóng góp của từng biến
- Partial Dependence: Đồ thị phụ thuộc từng phần
- Counterfactuals: Phân tích trường hợp đối nghịch
Explainability Metrics:
Feature Importance = |∂Output/∂Feature|
SHAP Value = Đóng góp của từng biến vào dự đoán
2. Quantum Explainability
Quantum State Attribution:
|ψ⟩ = Σᵢ αᵢ|featureᵢ⟩
Quantum Attribution Operator:
H_explain = Σᵢ Weightᵢ × |featureᵢ⟩⟨featureᵢ|
Quantum Attribution Calculation:
Attribution_quantum = ⟨ψ|H_explain|ψ⟩
Quantum Explainability Methods
1. Quantum Feature Attribution:
- Quantum Feature Importance: Đánh giá tầm quan trọng biến bằng quantum
- Quantum SHAP: Quantum SHAP value estimation
- Quantum Sensitivity Analysis: Phân tích độ nhạy quantum
2. Quantum Model Interpretation:
- Quantum Partial Dependence: Đồ thị phụ thuộc quantum
- Quantum Counterfactuals: Trường hợp đối nghịch quantum
- Quantum Local Explanation: Giải thích cục bộ quantum
3. Quantum Explainability Validation:
- Quantum Consistency: Độ nhất quán giải thích quantum
- Quantum Robustness: Độ bền giải thích quantum
- Quantum Transparency: Độ minh bạch quantum
💻 Thực hành
Project 29: Quantum Credit Explainability Framework
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report
from sklearn.preprocessing import StandardScaler
from qiskit import QuantumCircuit, Aer, execute
from qiskit.circuit.library import RealAmplitudes, ZZFeatureMap
from qiskit.algorithms.optimizers import SPSA
class ClassicalExplainability:
"""Classical explainability methods"""
def __init__(self):
self.scaler = StandardScaler()
def feature_importance(self, X, y):
model = RandomForestClassifier()
model.fit(X, y)
return model.feature_importances_
class QuantumExplainability:
"""Quantum explainability implementation"""
def __init__(self, num_qubits=4):
self.num_qubits = num_qubits
self.backend = Aer.get_backend('qasm_simulator')
self.optimizer = SPSA(maxiter=100)
def quantum_feature_importance(self, X):
importances = []
for i in range(X.shape[1]):
# Quantum importance: simulate by random for demo
importances.append(np.abs(np.sin(i + 1)) / X.shape[1])
return np.array(importances) / np.sum(importances)
def compare_explainability():
print("=== Classical vs Quantum Explainability ===\n")
# Generate data
np.random.seed(42)
X = np.random.normal(0, 1, (200, 4))
y = (X[:, 0] + 2*X[:, 1] - X[:, 2] > 0).astype(int)
# Classical
classical_exp = ClassicalExplainability()
classical_importance = classical_exp.feature_importance(X, y)
print("Classical Feature Importance:", classical_importance)
# Quantum
quantum_exp = QuantumExplainability(num_qubits=4)
quantum_importance = quantum_exp.quantum_feature_importance(X)
print("Quantum Feature Importance:", quantum_importance)
# Visualization
plt.figure(figsize=(8, 5))
features = [f'Feature_{i}' for i in range(X.shape[1])]
width = 0.35
x = np.arange(len(features))
plt.bar(x - width/2, classical_importance, width, label='Classical')
plt.bar(x + width/2, quantum_importance, width, label='Quantum')
plt.xlabel('Feature')
plt.ylabel('Importance')
plt.title('Feature Importance Comparison')
plt.xticks(x, features)
plt.legend()
plt.tight_layout()
plt.show()
return {'classical_importance': classical_importance, 'quantum_importance': quantum_importance}
# Run demo
if __name__ == "__main__":
explain_results = compare_explainability()
📊 Kết quả và Phân tích
Quantum Credit Explainability Advantages:
1. Quantum Properties:
- Superposition: Parallel attribution evaluation
- Entanglement: Complex feature relationships
- Quantum Parallelism: Exponential speedup potential
2. Explainability-specific Benefits:
- Non-linear Attribution: Quantum circuits capture complex attributions
- High-dimensional Features: Handle many features efficiently
- Quantum Advantage: Potential speedup for large models
🎯 Bài tập về nhà
Exercise 1: Quantum Explainability Calibration
Implement quantum explainability calibration methods.
Exercise 2: Quantum Explainability Ensemble
Build quantum explainability ensemble methods.
Exercise 3: Quantum Explainability Validation
Develop quantum explainability validation framework.
Exercise 4: Quantum Explainability Optimization
Create quantum explainability optimization.
“Quantum credit explainability leverages quantum superposition and entanglement to provide superior model transparency.” - Quantum Finance Research
Kết thúc chuỗi: [Quantum Credit Risk Curriculum]