Day 35: Capstone Project và Portfolio Building

🎯 Mục tiêu

  • Hoàn thành dự án capstone end-to-end
  • Xây dựng portfolio chuyên nghiệp
  • Chuẩn bị cho sự nghiệp trong quantum computing
  • Kết nối với cộng đồng lượng tử
  • Tổng kết và đánh giá toàn bộ khóa học

🧠 Capstone Project - Tổng Quan

Tại sao cần Capstone Project?

  • Tổng hợp kiến thức: Áp dụng tất cả kiến thức đã học
  • Portfolio building: Tạo sản phẩm để showcase
  • Real-world application: Giải quyết bài toán thực tế
  • Career preparation: Chuẩn bị cho sự nghiệp
  • Community contribution: Đóng góp cho cộng đồng
from qiskit import QuantumCircuit, Aer, execute, IBMQ
from qiskit.algorithms import VQE, QAOA
from qiskit.algorithms.optimizers import SPSA, COBYLA
from qiskit.quantum_info import Pauli
from qiskit.opflow import PauliSumOp, I, Z, X, Y
from qiskit.visualization import plot_histogram, plot_state_city
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, classification_report
import json
import pickle
from datetime import datetime

🚀 Capstone Project Options

1. Quantum Machine Learning Classifier

class QuantumMLClassifier:
    """
    Quantum Machine Learning Classifier - Capstone Project
    """
    
    def __init__(self, n_qubits=4, n_layers=2):
        self.n_qubits = n_qubits
        self.n_layers = n_layers
        self.circuit = None
        self.parameters = []
        self.optimizer = SPSA(maxiter=100)
        self.backend = Aer.get_backend('qasm_simulator')
        
    def create_circuit(self):
        """
        Tạo quantum circuit cho classification
        """
        qc = QuantumCircuit(self.n_qubits, self.n_qubits)
        
        # Parameters for feature encoding
        feature_params = [Parameter(f'x_{i}') for i in range(self.n_qubits)]
        
        # Parameters for variational layers
        var_params = []
        for layer in range(self.n_layers):
            for i in range(self.n_qubits):
                theta = Parameter(f'θ_{layer}_{i}')
                var_params.append(theta)
        
        # Feature encoding layer
        for i in range(self.n_qubits):
            qc.rx(feature_params[i], i)
            qc.rz(feature_params[i], i)
        
        # Variational layers
        param_idx = 0
        for layer in range(self.n_layers):
            # Single-qubit rotations
            for i in range(self.n_qubits):
                qc.ry(var_params[param_idx], i)
                param_idx += 1
            
            # Entangling layer
            for i in range(self.n_qubits - 1):
                qc.cx(i, i + 1)
            qc.cx(self.n_qubits - 1, 0)
        
        # Measurement
        qc.measure_all()
        
        self.circuit = qc
        self.parameters = feature_params + var_params
        
        return qc
    
    def prepare_data(self, n_samples=200):
        """
        Chuẩn bị dữ liệu cho training
        """
        # Generate synthetic data
        X, y = make_classification(
            n_samples=n_samples,
            n_features=self.n_qubits,
            n_redundant=0,
            n_informative=self.n_qubits,
            random_state=42,
            n_clusters_per_class=1
        )
        
        # Normalize data
        X = (X - X.mean(axis=0)) / X.std(axis=0)
        
        # Split data
        X_train, X_test, y_train, y_test = train_test_split(
            X, y, test_size=0.3, random_state=42
        )
        
        return X_train, X_test, y_train, y_test
    
    def quantum_kernel(self, x1, x2):
        """
        Tính quantum kernel giữa hai điểm dữ liệu
        """
        # Create circuit with data
        qc = self.circuit.bind_parameters({f'x_{i}': x1[i] for i in range(self.n_qubits)})
        
        # Execute circuit
        job = execute(qc, self.backend, shots=1000)
        result = job.result()
        counts1 = result.get_counts()
        
        # Create circuit with second data point
        qc2 = self.circuit.bind_parameters({f'x_{i}': x2[i] for i in range(self.n_qubits)})
        job2 = execute(qc2, self.backend, shots=1000)
        result2 = job2.result()
        counts2 = result2.get_counts()
        
        # Calculate kernel (simplified)
        kernel_value = 0
        for state in counts1:
            if state in counts2:
                kernel_value += (counts1[state] * counts2[state]) / (1000 * 1000)
        
        return kernel_value
    
    def train(self, X_train, y_train):
        """
        Training quantum classifier
        """
        print("Training Quantum ML Classifier...")
        
        # Initialize parameters randomly
        initial_params = np.random.random(len(self.parameters))
        
        # Define objective function
        def objective(params):
            total_loss = 0
            for i in range(len(X_train)):
                # Bind parameters
                param_dict = {}
                for j, param in enumerate(self.parameters):
                    if param.name.startswith('x_'):
                        param_dict[param] = X_train[i][int(param.name.split('_')[1])]
                    else:
                        param_dict[param] = params[j - self.n_qubits]
                
                # Execute circuit
                qc_bound = self.circuit.bind_parameters(param_dict)
                job = execute(qc_bound, self.backend, shots=100)
                result = job.result()
                counts = result.get_counts()
                
                # Calculate prediction (simplified)
                prediction = 0
                for state, count in counts.items():
                    if state[0] == '1':  # First qubit measurement
                        prediction += count / 100
                
                # Calculate loss
                loss = (prediction - y_train[i]) ** 2
                total_loss += loss
            
            return total_loss / len(X_train)
        
        # Optimize
        result = self.optimizer.minimize(objective, initial_params)
        self.optimal_params = result.x
        
        print(f"Training completed. Final loss: {result.fun:.4f}")
        return result
    
    def predict(self, X_test):
        """
        Dự đoán trên test data
        """
        predictions = []
        
        for x in X_test:
            # Bind parameters
            param_dict = {}
            for j, param in enumerate(self.parameters):
                if param.name.startswith('x_'):
                    param_dict[param] = x[int(param.name.split('_')[1])]
                else:
                    param_dict[param] = self.optimal_params[j - self.n_qubits]
            
            # Execute circuit
            qc_bound = self.circuit.bind_parameters(param_dict)
            job = execute(qc_bound, self.backend, shots=100)
            result = job.result()
            counts = result.get_counts()
            
            # Calculate prediction
            prediction = 0
            for state, count in counts.items():
                if state[0] == '1':
                    prediction += count / 100
            
            predictions.append(1 if prediction > 0.5 else 0)
        
        return np.array(predictions)
    
    def evaluate(self, X_test, y_test):
        """
        Đánh giá model
        """
        predictions = self.predict(X_test)
        accuracy = accuracy_score(y_test, predictions)
        
        print(f"Test Accuracy: {accuracy:.4f}")
        print("\nClassification Report:")
        print(classification_report(y_test, predictions))
        
        return accuracy, predictions

# Test Quantum ML Classifier
qml_classifier = QuantumMLClassifier(n_qubits=4, n_layers=2)
qml_classifier.create_circuit()
X_train, X_test, y_train, y_test = qml_classifier.prepare_data()
qml_classifier.train(X_train, y_train)
accuracy, predictions = qml_classifier.evaluate(X_test, y_test)

2. Quantum Chemistry Simulation

class QuantumChemistrySimulator:
    """
    Quantum Chemistry Simulator - Capstone Project
    """
    
    def __init__(self, molecule_name="H2"):
        self.molecule_name = molecule_name
        self.hamiltonian = None
        self.ground_state_energy = None
        self.vqe_result = None
        
    def create_h2_hamiltonian(self):
        """
        Tạo Hamiltonian cho phân tử H2
        """
        # H2 molecule in minimal basis
        # H = -0.2427*I - 0.1809*Z0 - 0.1809*Z1 + 0.1722*Z0Z1 + 0.0452*X0X1
        
        hamiltonian = PauliSumOp.from_list([
            ('II', -0.2427),
            ('ZI', -0.1809),
            ('IZ', -0.1809),
            ('ZZ', 0.1722),
            ('XX', 0.0452)
        ])
        
        self.hamiltonian = hamiltonian
        return hamiltonian
    
    def create_ansatz(self):
        """
        Tạo ansatz circuit cho VQE
        """
        qc = QuantumCircuit(2)
        
        # Reference state |01⟩ (Hartree-Fock)
        qc.x(0)
        
        # UCC ansatz
        theta = Parameter('θ')
        qc.cx(0, 1)
        qc.ry(theta, 1)
        qc.cx(0, 1)
        
        return qc, [theta]
    
    def run_vqe(self):
        """
        Chạy VQE để tìm ground state energy
        """
        # Create ansatz
        ansatz, params = self.create_ansatz()
        
        # Setup VQE
        optimizer = COBYLA(maxiter=100)
        backend = Aer.get_backend('statevector_simulator')
        
        vqe = VQE(
            ansatz=ansatz,
            optimizer=optimizer,
            quantum_instance=backend
        )
        
        # Solve
        result = vqe.solve(self.hamiltonian)
        
        self.vqe_result = result
        self.ground_state_energy = result.optimal_value
        
        print(f"Ground State Energy: {result.optimal_value:.6f} Hartree")
        print(f"Optimal Parameters: {result.optimal_parameters}")
        
        return result
    
    def analyze_results(self):
        """
        Phân tích kết quả simulation
        """
        if self.vqe_result is None:
            print("Please run VQE first")
            return
        
        # Convert to eV
        energy_ev = self.ground_state_energy * 27.2114  # Hartree to eV
        
        print(f"\n=== {self.molecule_name} Analysis ===")
        print(f"Ground State Energy: {self.ground_state_energy:.6f} Hartree")
        print(f"Ground State Energy: {energy_ev:.4f} eV")
        print(f"Optimal Parameters: {self.vqe_result.optimal_parameters}")
        
        # Compare with exact result
        exact_energy = -1.1373  # Hartree (exact for H2)
        error = abs(self.ground_state_energy - exact_energy)
        print(f"Exact Energy: {exact_energy:.6f} Hartree")
        print(f"Error: {error:.6f} Hartree")
        print(f"Relative Error: {error/abs(exact_energy)*100:.2f}%")
        
        return {
            'energy_hartree': self.ground_state_energy,
            'energy_ev': energy_ev,
            'error': error,
            'relative_error': error/abs(exact_energy)*100
        }

# Test Quantum Chemistry Simulator
chem_simulator = QuantumChemistrySimulator("H2")
chem_simulator.create_h2_hamiltonian()
vqe_result = chem_simulator.run_vqe()
analysis = chem_simulator.analyze_results()

3. Quantum Optimization Solver

class QuantumOptimizationSolver:
    """
    Quantum Optimization Solver - Capstone Project
    """
    
    def __init__(self, problem_type="maxcut"):
        self.problem_type = problem_type
        self.graph = None
        self.cost_operator = None
        self.qaoa_result = None
        
    def create_maxcut_problem(self, n_nodes=4):
        """
        Tạo bài toán MaxCut
        """
        # Create simple graph
        edges = [(0, 1), (1, 2), (2, 3), (3, 0), (0, 2)]
        self.graph = edges
        
        # Create cost operator for MaxCut
        cost_operator = PauliSumOp.from_list([
            ('ZZ', 1.0),  # Edge (0,1)
            ('IZ', 1.0),  # Edge (1,2) 
            ('ZI', 1.0),  # Edge (2,3)
            ('ZZ', 1.0),  # Edge (3,0)
            ('ZZ', 1.0)   # Edge (0,2)
        ])
        
        self.cost_operator = cost_operator
        return cost_operator
    
    def run_qaoa(self, p=2):
        """
        Chạy QAOA để giải bài toán optimization
        """
        # Create QAOA
        optimizer = COBYLA(maxiter=100)
        backend = Aer.get_backend('qasm_simulator')
        
        qaoa = QAOA(
            optimizer=optimizer,
            reps=p,
            quantum_instance=backend
        )
        
        # Solve
        result = qaoa.solve(self.cost_operator)
        
        self.qaoa_result = result
        print(f"Optimal Cost: {result.optimal_value:.4f}")
        print(f"Optimal Parameters: {result.optimal_parameters}")
        
        return result
    
    def analyze_solution(self):
        """
        Phân tích solution
        """
        if self.qaoa_result is None:
            print("Please run QAOA first")
            return
        
        # Get optimal circuit
        optimal_circuit = self.qaoa_result.optimal_circuit
        
        # Execute circuit to get solution
        backend = Aer.get_backend('qasm_simulator')
        job = execute(optimal_circuit, backend, shots=1000)
        result = job.result()
        counts = result.get_counts()
        
        print(f"\n=== {self.problem_type.upper()} Solution ===")
        print(f"Optimal Cost: {self.qaoa_result.optimal_value:.4f}")
        print(f"Most frequent solutions:")
        
        # Sort by frequency
        sorted_counts = sorted(counts.items(), key=lambda x: x[1], reverse=True)
        
        for i, (solution, count) in enumerate(sorted_counts[:5]):
            probability = count / 1000
            print(f"  {solution}: {count} times ({probability:.2%})")
            
            # Calculate cut value for this solution
            cut_value = self.calculate_cut_value(solution)
            print(f"    Cut value: {cut_value}")
        
        return counts
    
    def calculate_cut_value(self, solution):
        """
        Tính giá trị cut cho một solution
        """
        cut_value = 0
        for edge in self.graph:
            node1, node2 = edge
            if solution[node1] != solution[node2]:
                cut_value += 1
        return cut_value

# Test Quantum Optimization Solver
opt_solver = QuantumOptimizationSolver("maxcut")
opt_solver.create_maxcut_problem()
qaoa_result = opt_solver.run_qaoa()
solution_counts = opt_solver.analyze_solution()

📊 Portfolio Building

1. Project Documentation

class ProjectDocumentation:
    """
    Tạo documentation cho capstone project
    """
    
    def __init__(self, project_name):
        self.project_name = project_name
        self.documentation = {}
        
    def create_readme(self):
        """
        Tạo README.md cho project
        """
        readme_content = f"""
# {self.project_name}

## Mô tả
Quantum computing project sử dụng Qiskit để giải quyết bài toán thực tế.

## Cài đặt
```bash
pip install qiskit numpy matplotlib scikit-learn

Sử dụng

# Import project
from {self.project_name.lower().replace(' ', '_')} import *

# Run project
python main.py

Kết quả

  • Accuracy: {accuracy:.4f}
  • Performance metrics được thể hiện trong notebook

Tác giả

[Your Name]

License

MIT “””

    return readme_content

def create_requirements(self):
    """
    Tạo requirements.txt
    """
    requirements = """ qiskit>=0.40.0 numpy>=1.21.0 matplotlib>=3.5.0 scikit-learn>=1.0.0 pandas>=1.3.0 seaborn>=0.11.0 """
    return requirements

def create_presentation(self):
    """
    Tạo presentation slides
    """
    slides_content = f""" # {self.project_name} - Presentation

Slide 1: Introduction

  • Problem statement
  • Quantum computing approach
  • Expected outcomes

Slide 2: Methodology

  • Quantum algorithm used
  • Implementation details
  • Technical challenges

Slide 3: Results

  • Performance metrics
  • Comparison with classical methods
  • Key findings

Slide 4: Conclusion

  • Summary of achievements
  • Future work
  • Impact and applications “”” return slides_content

Create documentation

doc = ProjectDocumentation(“Quantum ML Classifier”) readme = doc.create_readme() requirements = doc.create_requirements() presentation = doc.create_presentation()


### 2. GitHub Repository Setup

```python
def setup_github_repo():
    """
    Hướng dẫn setup GitHub repository
    """
    setup_instructions = """
# GitHub Repository Setup

## 1. Create Repository
- Go to GitHub.com
- Click "New repository"
- Name: quantum-ml-classifier
- Description: Quantum Machine Learning Classifier using Qiskit
- Make it public
- Add README.md

## 2. Clone Repository
```bash
git clone https://github.com/yourusername/quantum-ml-classifier.git
cd quantum-ml-classifier

3. Add Project Files

# Add all files
git add .

# Commit changes
git commit -m "Initial commit: Quantum ML Classifier"

# Push to GitHub
git push origin main

4. Repository Structure

quantum-ml-classifier/
├── README.md
├── requirements.txt
├── main.py
├── quantum_classifier.py
├── notebooks/
│   ├── 01_data_preparation.ipynb
│   ├── 02_model_training.ipynb
│   └── 03_results_analysis.ipynb
├── data/
├── results/
└── docs/
    └── presentation.md

””” return setup_instructions

github_setup = setup_github_repo()


## 🎯 Career Preparation

### 1. Resume Building

```python
def create_quantum_resume():
    """
    Tạo resume cho quantum computing career
    """
    resume_content = """
# [Your Name] - Quantum Computing Engineer

## Contact
- Email: your.email@example.com
- LinkedIn: linkedin.com/in/yourprofile
- GitHub: github.com/yourusername
- Portfolio: yourportfolio.com

## Summary
Quantum computing engineer với 35 ngày intensive training về quantum algorithms, 
Qiskit programming, và real hardware experience. Chuyên về quantum machine learning, 
optimization, và quantum chemistry simulation.

## Skills
### Quantum Computing
- Qiskit, PennyLane, Cirq
- Quantum algorithms (Grover, Shor, QFT, VQE, QAOA)
- Quantum error correction và mitigation
- IBM Quantum Experience

### Programming
- Python, NumPy, SciPy
- Machine Learning (scikit-learn, TensorFlow)
- Data visualization (Matplotlib, Seaborn)
- Version control (Git, GitHub)

### Mathematics
- Linear algebra, quantum mechanics
- Optimization theory
- Statistical analysis
- Algorithm complexity

## Projects

### Quantum ML Classifier
- Developed quantum machine learning classifier using Qiskit
- Achieved 85% accuracy on synthetic dataset
- Implemented quantum feature maps và variational circuits
- Technologies: Qiskit, Python, scikit-learn

### Quantum Chemistry Simulator
- Built VQE-based molecular simulation for H2 molecule
- Achieved 99.5% accuracy compared to exact results
- Implemented UCC ansatz và optimization
- Technologies: Qiskit, VQE, quantum chemistry

### Quantum Optimization Solver
- Developed QAOA solver for MaxCut problems
- Optimized quantum circuits for NISQ devices
- Implemented error mitigation techniques
- Technologies: QAOA, NISQ optimization

## Education
- Quantum Mathematics Intensive Course (35 days)
- [Your University] - [Your Degree]
- Relevant coursework: Quantum Computing, Machine Learning, Optimization

## Certifications
- IBM Quantum Experience User
- Qiskit Developer Certification (if applicable)

## Languages
- English (Fluent)
- Vietnamese (Native)
"""
    return resume_content

resume = create_quantum_resume()

2. Job Search Strategy

def quantum_job_search_strategy():
    """
    Chiến lược tìm việc trong quantum computing
    """
    strategy = """
# Quantum Computing Job Search Strategy

## 1. Target Companies
### Big Tech
- IBM Quantum
- Google Quantum AI
- Microsoft Quantum
- Amazon Braket
- Intel Quantum

### Quantum Startups
- Rigetti Computing
- IonQ
- PsiQuantum
- Xanadu
- Zapata Computing

### Research Institutions
- National Labs (Argonne, Oak Ridge)
- Universities with quantum programs
- Research organizations

## 2. Job Titles to Target
- Quantum Software Engineer
- Quantum Algorithm Developer
- Quantum Research Scientist
- Quantum Applications Engineer
- Quantum Computing Researcher

## 3. Skills to Highlight
- Qiskit programming experience
- Real hardware experience (IBM Quantum)
- Algorithm implementation
- Error mitigation techniques
- Portfolio projects

## 4. Networking
- LinkedIn quantum computing groups
- Quantum computing conferences
- Local quantum meetups
- Online quantum communities

## 5. Application Strategy
- Customize resume for each position
- Include portfolio links
- Highlight relevant projects
- Demonstrate quantum knowledge
"""
    return strategy

job_strategy = quantum_job_search_strategy()

🌐 Community Engagement

1. Online Communities

def quantum_communities():
    """
    Danh sách cộng đồng quantum computing
    """
    communities = """
# Quantum Computing Communities

## Online Forums
- Quantum Computing Stack Exchange
- Reddit r/QuantumComputing
- Qiskit Community Forum
- PennyLane Community

## Social Media
- LinkedIn Quantum Computing Groups
- Twitter #QuantumComputing
- Discord Quantum Computing servers
- Telegram Quantum groups

## Conferences & Events
- Qiskit Global Summer School
- IBM Quantum Challenge
- Quantum Computing Hackathons
- Local quantum meetups

## Learning Platforms
- IBM Quantum Learning
- Qiskit Textbook
- Quantum Computing Report
- Quantum Journal
"""
    return communities

communities_list = quantum_communities()

2. Contributing to Open Source

def open_source_contribution():
    """
    Hướng dẫn đóng góp open source
    """
    contribution_guide = """
# Open Source Contribution Guide

## 1. Qiskit Ecosystem
- Qiskit Terra: Core quantum circuits
- Qiskit Aer: Simulators
- Qiskit Ignis: Error mitigation
- Qiskit Aqua: Algorithms

## 2. Contribution Types
- Bug fixes
- Documentation improvements
- New features
- Tutorial creation
- Code examples

## 3. Getting Started
- Fork repository
- Create feature branch
- Make changes
- Write tests
- Submit pull request

## 4. Your Projects
- Open source your capstone projects
- Create quantum tutorials
- Share quantum notebooks
- Build quantum tools
"""
    return contribution_guide

contribution_guide = open_source_contribution()

📈 Final Assessment

1. Skills Assessment

def final_skills_assessment():
    """
    Đánh giá kỹ năng cuối khóa
    """
    assessment = {
        "Quantum Fundamentals": {
            "Superposition": "✅ Mastered",
            "Entanglement": "✅ Mastered", 
            "Measurement": "✅ Mastered",
            "Quantum Gates": "✅ Mastered"
        },
        "Programming": {
            "Qiskit": "✅ Proficient",
            "Python": "✅ Proficient",
            "Quantum Circuits": "✅ Proficient",
            "Algorithm Implementation": "✅ Proficient"
        },
        "Algorithms": {
            "Grover": "✅ Implemented",
            "VQE": "✅ Implemented",
            "QAOA": "✅ Implemented",
            "QFT": "✅ Implemented"
        },
        "Real Hardware": {
            "IBM Quantum": "✅ Experience",
            "Error Mitigation": "✅ Implemented",
            "Noise Characterization": "✅ Understanding",
            "NISQ Optimization": "✅ Applied"
        },
        "Applications": {
            "Quantum ML": "✅ Project Completed",
            "Quantum Chemistry": "✅ Project Completed",
            "Quantum Optimization": "✅ Project Completed",
            "Portfolio": "✅ Created"
        }
    }
    
    return assessment

skills_assessment = final_skills_assessment()

2. Learning Path Forward

def future_learning_path():
    """
    Lộ trình học tập tiếp theo
    """
    learning_path = """
# Future Learning Path

## Short Term (3-6 months)
- Deep dive into specific quantum algorithms
- Contribute to open source quantum projects
- Attend quantum computing conferences
- Build more complex quantum applications

## Medium Term (6-12 months)
- Specialize in quantum machine learning
- Learn additional quantum frameworks (PennyLane, Cirq)
- Work on quantum research projects
- Network with quantum computing professionals

## Long Term (1+ years)
- Pursue advanced quantum computing degree
- Work in quantum computing industry
- Contribute to quantum computing research
- Mentor others in quantum computing

## Specializations
- Quantum Machine Learning
- Quantum Chemistry
- Quantum Cryptography
- Quantum Error Correction
- Quantum Hardware
"""
    return learning_path

future_path = future_learning_path()

🎯 Bài tập cuối khóa

Bài tập 1: Complete Capstone Project

def capstone_project_requirements():
    """
    Yêu cầu cho capstone project hoàn chỉnh
    """
    requirements = """
# Capstone Project Requirements

## 1. Project Selection
- Choose one: Quantum ML, Quantum Chemistry, or Quantum Optimization
- Define clear problem statement
- Set measurable objectives

## 2. Implementation
- Implement complete solution
- Use real quantum hardware when possible
- Apply error mitigation techniques
- Optimize for NISQ devices

## 3. Documentation
- Create comprehensive README
- Write technical documentation
- Create presentation slides
- Record demo video

## 4. Analysis
- Compare with classical methods
- Analyze performance metrics
- Discuss limitations and improvements
- Document lessons learned

## 5. Portfolio
- Host project on GitHub
- Create portfolio website
- Write blog post about project
- Share with quantum community
"""
    return requirements

project_requirements = capstone_project_requirements()

Bài tập 2: Portfolio Website

def portfolio_website_structure():
    """
    Cấu trúc website portfolio
    """
    structure = """
# Portfolio Website Structure

## Pages
1. Home
   - Introduction
   - Key skills
   - Contact information

2. Projects
   - Quantum ML Classifier
   - Quantum Chemistry Simulator
   - Quantum Optimization Solver
   - Other projects

3. Skills
   - Quantum Computing
   - Programming
   - Mathematics
   - Tools & Technologies

4. Experience
   - Education
   - Certifications
   - Work experience
   - Research

5. Blog
   - Quantum computing articles
   - Tutorial posts
   - Project updates
   - Industry insights

6. Contact
   - Contact form
   - Social media links
   - Resume download
"""
    return structure

website_structure = portfolio_website_structure()

📚 Tài nguyên bổ sung

Career Resources:

Portfolio Examples:

Networking:


🎯 Tổng kết khóa học

Thành tựu đạt được:

  • ✅ Hoàn thành 35 ngày intensive quantum computing training
  • ✅ Thành thạo Qiskit và quantum programming
  • ✅ Triển khai các thuật toán lượng tử quan trọng
  • ✅ Làm việc với real quantum hardware
  • ✅ Hoàn thành capstone project
  • ✅ Xây dựng portfolio chuyên nghiệp

Kỹ năng chuyên môn:

  • Quantum algorithms (Grover, Shor, VQE, QAOA)
  • Quantum machine learning và optimization
  • Error mitigation và NISQ optimization
  • Real hardware experience với IBM Quantum
  • Project management và documentation

Chuẩn bị cho sự nghiệp:

  • Portfolio hoàn chỉnh với projects thực tế
  • Kết nối với cộng đồng quantum computing
  • Chiến lược tìm việc và networking
  • Lộ trình học tập tiếp theo

“The future of computing is quantum, and you are now part of that future.” 🚀