ggplot2 vs. matplotlib

Below is a markdown table comparing the features of ggplot2 (R) and matplotlib (Python) for creating visualizations:

  1. Plot basics

    ggplot2 (R) Feature matplotlib (Python)
    aes() Used inside ggplot() to map variables to aesthetics Not used; column names are specified directly in plot()
    +() %>% Used to add layers and modify the plot Not applicable
    ggsave() Save the plot to a file Not applicable; plots are saved using plt.savefig() in Matplotlib
    quickplot() Simple, intuitive function for quick plots Not available
  2. Layers

    ggplot2 (R) Feature matplotlib (Python)
    geom_abline() Add an arbitrary line to the plot axhline() and axvline() in Matplotlib
    geom_hline() Add horizontal lines to the plot axhline() in Matplotlib
    geom_vline() Add vertical lines to the plot axvline() in Matplotlib
    geom_bar() Create bar charts kind='bar' in plot()
    geom_col() Create column charts kind='bar' with position='identity' in plot()
    stat_count() Create bar charts with automatic counting kind='bar' with position='identity' in plot()
    geom_boxplot() Create boxplots kind='box' in plot()
    stat_boxplot() Create boxplots with statistical summaries kind='box' in plot()
    geom_map() Plot spatial data on maps Not available
    geom_point() Create scatter plots kind='scatter' in plot()
    geom_label() Add text labels to points Not available
    geom_text() Add text annotations to the plot text() in Matplotlib
    geom_violin() Create violin plots Not available
    stat_ydensity() Compute density for violin plots Not available
  3. Position adjustment

    ggplot2 (R) Feature matplotlib (Python)
    position_dodge() Dodge overlapping elements Not available
  4. Annotations

    ggplot2 (R) Feature matplotlib (Python)
    annotate() Add annotations to the plot Not available
  5. Scales

    ggplot2 (R) Feature matplotlib (Python)
    labs() Modify plot labels and titles Not available
    xlab() Modify the x-axis label set_xlabel() in Matplotlib
    ylab() Modify the y-axis label set_ylabel() in Matplotlib
    ggtitle() Add a plot title set_title() in Matplotlib
    lims() Set plot limits set_xlim() and set_ylim() in Matplotlib
    xlim() Set x-axis limits set_xlim() in Matplotlib
    ylim() Set y-axis limits set_ylim() in Matplotlib
    scale_x_continuous() Modify x-axis scales set_xscale() in Matplotlib
    scale_y_continuous() Modify y-axis scales set_yscale() in Matplotlib
    scale_x_date() Modify x-axis scales for date data Not available
    scale_y_date() Modify y-axis scales for date data Not available
    scale_x_discrete() Modify x-axis scales for discrete data Not available
    scale_y_discrete() Modify y-axis scales for discrete data Not available
  6. Facetting

    ggplot2 (R) Feature matplotlib (Python)
    facet_wrap() Create small multiples in a wrap layout subplots=True with multiple plots in Pandas
    facet_grid() Create small multiples in a grid layout subplots=True with multiple plots in Pandas
    coord_flip() Flip the x and y-axis Not available
  7. Themes

    ggplot2 (R) Feature matplotlib (Python)
    element_blank() Remove an element from the plot Not available
    element_rect() Modify rectangle elements in the plot Not available
    element_line() Modify line elements in the plot Not available
    element_text() Modify text elements in the plot Not available
  8. autoplot

    ggplot2 (R) Feature matplotlib (Python)
    autoplot() Create basic plots automatically Not available

Please note that ggplot2 and matplotlib are both powerful visualization libraries, but they have different philosophies and strengths. The syntax for creating visualizations can differ significantly between the two libraries.