ggplot2
vs. matplotlib
Below is a markdown table comparing the features of ggplot2
(R) and matplotlib
(Python) for creating visualizations:
Plot basics
ggplot2 (R) Feature matplotlib (Python) aes() Used inside ggplot()
to map variables to aestheticsNot used; column names are specified directly in plot()
+( ) %>% Used to add layers and modify the plot Not applicable ggsave() Save the plot to a file Not applicable; plots are saved using plt.savefig()
in Matplotlibquickplot() Simple, intuitive function for quick plots Not available Layers
ggplot2 (R) Feature matplotlib (Python) geom_abline() Add an arbitrary line to the plot axhline()
andaxvline()
in Matplotlibgeom_hline() Add horizontal lines to the plot axhline()
in Matplotlibgeom_vline() Add vertical lines to the plot axvline()
in Matplotlibgeom_bar() Create bar charts kind='bar'
inplot()
geom_col() Create column charts kind='bar'
withposition='identity'
inplot()
stat_count() Create bar charts with automatic counting kind='bar'
withposition='identity'
inplot()
geom_boxplot() Create boxplots kind='box'
inplot()
stat_boxplot() Create boxplots with statistical summaries kind='box'
inplot()
geom_map() Plot spatial data on maps Not available geom_point() Create scatter plots kind='scatter'
inplot()
geom_label() Add text labels to points Not available geom_text() Add text annotations to the plot text()
in Matplotlibgeom_violin() Create violin plots Not available stat_ydensity() Compute density for violin plots Not available Position adjustment
ggplot2 (R) Feature matplotlib (Python) position_dodge() Dodge overlapping elements Not available Annotations
ggplot2 (R) Feature matplotlib (Python) annotate() Add annotations to the plot Not available Scales
ggplot2 (R) Feature matplotlib (Python) labs() Modify plot labels and titles Not available xlab() Modify the x-axis label set_xlabel()
in Matplotlibylab() Modify the y-axis label set_ylabel()
in Matplotlibggtitle() Add a plot title set_title()
in Matplotliblims() Set plot limits set_xlim()
andset_ylim()
in Matplotlibxlim() Set x-axis limits set_xlim()
in Matplotlibylim() Set y-axis limits set_ylim()
in Matplotlibscale_x_continuous() Modify x-axis scales set_xscale()
in Matplotlibscale_y_continuous() Modify y-axis scales set_yscale()
in Matplotlibscale_x_date() Modify x-axis scales for date data Not available scale_y_date() Modify y-axis scales for date data Not available scale_x_discrete() Modify x-axis scales for discrete data Not available scale_y_discrete() Modify y-axis scales for discrete data Not available Facetting
ggplot2 (R) Feature matplotlib (Python) facet_wrap() Create small multiples in a wrap layout subplots=True
with multiple plots in Pandasfacet_grid() Create small multiples in a grid layout subplots=True
with multiple plots in Pandascoord_flip() Flip the x and y-axis Not available Themes
ggplot2 (R) Feature matplotlib (Python) element_blank() Remove an element from the plot Not available element_rect() Modify rectangle elements in the plot Not available element_line() Modify line elements in the plot Not available element_text() Modify text elements in the plot Not available autoplot
ggplot2 (R) Feature matplotlib (Python) autoplot() Create basic plots automatically Not available
Please note that ggplot2
and matplotlib
are both powerful visualization libraries, but they have different philosophies and strengths. The syntax for creating visualizations can differ significantly between the two libraries.